

Improvement and Validation of an Analytical Code for Ship Collisions Based on Super-Element Method

Master Thesis Presentation

Supervisors: Prof. Hervé Le Sourne, L'Institut Catholique d'Arts et Métiers Ing. Stéphane Paboeuf, Bureau Veritas, Nantes

> Bayram Ozdogan La Specia 2018

2

- Objective
- Results and Conclusions of Previous Study by Sone Oo
- New Hypothesis
- Validation with Basic Cases
- Main Gaps of Proposed Method
- Trials with Real Models
- Conclusion and Recommendations

Reminder

1000-Case	Deformation Energy [MJ]	
LS-DYNA		5.79
SHARP (Average)		5.03
% Difference		13%

					m		
				비병별물	1		
				197			
			특별 반응				
			88-88			Same Arts	
						Contractor of the	
		110 110				-	
			38 11	102		100 C 100 C 100	
				+ /2 ==		and so its owner.	
						and the second	
				THE			
10 11					HUR.		and the second second second
					124		
					TV I		

2000-Case	Deformation Energy [MJ]
LS-DYNA	4.49
SHARP (Average)	1.05
% Difference	77%

5000-Case	Deformation Energy [MJ]	
LS-DYNA		6.68
SHARP (Average)		7.21
% Difference		-8%

3

Main Deficiency

4

- Lack of post rupture resistance

6 Basic Trials with LS-Dyna

Basic Cases

Absorbed Energy After Rupture					
Ву	LS-Dyna	SHARP	Discrepency		
Point-1	5.88E+07	5.40E+07	8.23%		

Point 2	Absorbed Energy After Rupture				
	Ву	LS-Dyna	SHARP	Discrepency	
	Point-2	5.98E+07	5.57E+07	6.91%	

Main Gaps of Proposed Method

- Area Calculation

Point-3

9 Determining Max Sectional Area Basic Trials Point 2

	1 m indentation - Average - Triangular- $\delta_{Rupture}$			
				Discre
L	s dyna		5.79E+06	-
Sł	HARP Zero Post Rupture Re	esistance	5.03E+06	13.15%
Sł	HARP with Calculated Post	Rupture Resistance	6.32E+06	-9.18%

1 m indentation - Average - Elliptic- $\delta_{Rupture}$			
		Discre	
Ls dyna	5.79E+06	-	
SHARP Zero Post Rupture Resistance	5.03E+06	13.15%	
SHARP with Calculated Post Rupture Resistance	6.30E+06	-8.82%	

1 m indentation - Average - Triangular- δ_{Total}			
		Discre	
Ls dyna	5.79E+06	-	
SHARP Zero Post Rupture Resistance	5.03E+06	13.15%	
SHARP with Calculated Post Rupture Resistance	6.23E+06	-7.67%	

1 m indentation - Average - Elliptical- δ_{Total}			
Discre			
Ls dyna	5.79E+06	-	
SHARP Zero Post Rupture Resistance	5.03E+06	13.15%	
SHARP with Calculated Post Rupture Resistance	6.16E+06	-6.37%	

12

Results – Case – 2

1 m indentation - Average - Triangular - $\delta_{Rupture}$			
		Discre	
Ls dyna	4.49E+06	-	
SHARP Zero Post Rupture Resistance	1.05E+06	76.61%	
SHARP with Calculated Post Rupture Resistance	3.52E+06	21.60%	

1 m indentation - Average - Elliptic - $\delta_{Rupture}$			
		Discre	
.s dyna	4.49E+06	-	
SHARP Zero Post Rupture Resistance	1.05E+06	76.61%	
HARP with Calculated Post Rupture Resistance	3.48E+06	22.57%	

1 m indentation - Average - Triangular - δ_{Total}				
		Discre		
Ls dyna	4.49E+06	-		
SHARP Zero Post Rupture Resistance	1.05E+06	76.61%		
SHARP with Calculated Post Rupture Resistance	3.35E+06	25.46%		

1 m indeptation Average Elliptic S					
I m Indentation - Average - Elliptic - O _{Total}					
		Discre			
Ls dyna	4.49E+06	-			
SHARP Zero Post Rupture Resistance	1.05E+06	76.61%			
SHARP with Calculated Post Rupture Resistance	3.23E+06	28.14%			

Energy Contributions of Different Elements Case - 1

Parts	Ls-Dyna		Sharp (Wih	tout P.R.R)	Sharp (Wiht P.R.R)	
	E (MJ)	%	E (MJ)	%	E (MJ)	%
Total Energy	5.79	1	5.03	1.000	6.32	1.000
Side Shell	2.45	42.30%	1.18	23.50%	2.47	39.10%
Web Frame	1.81	31.30%	3.80	75.50%	3.80	60.10%
Weather Deck	1.13	19.50%	0.00	0.00%	0.00	0.00%
Stiffners	0.29	5.01%	0.05	1.00%	0.05	0.80%
Others	0.11	1.89%	0.00	0.00%	0.00	0.00%
Penetration	1	m	1	m	-	1 m

Triangular – $\delta_{Rupture}$

Energy Contributions of Different Elements Case - 2

Parts	Ls-Dyna		Sharp (Wih	tout P.R.R)	Sharp (Wiht P.R.R)	
	E (MJ)	%	E (MJ)	%	E (MJ)	%
Total Energy	4.49	1	1.05	1.000	3.52	1.000
Side Shell	2.47	55.00%	0.73	69.50%	3.19	90.70%
Web Frame	1.12	25.00%	0.23	21.80%	0.23	6.50%
Weather Deck	0.18	4.00%	0.00	0.00%	0.00	0.00%
Stiffners	0.45	10.00%	0.09	8.10%	0.09	2.55%
Others	0.27	6.00%	0.01	0.60%	0.01	0.28%
Penetration	1	m	1	m		1 m

Triangular – $\delta_{Rupture}$

Contributions of Different Elements Case – 3

15

Darts	Ls-D	yna	Sharp (Wihtout P.R.R)		
Faits	E (MJ)	%	E (MJ)	%	
Total Energy	6.68	1	7.21	1.000	
Side Shell	1.40	21.00%	1.92	26.60%	
Web Frame	1.54	23.00%	2.61	36.20%	
Weather Deck	2.84	42.50%	2.65	36.70%	
Stiffners	0.22	3.30%	0.04	0.50%	
Others	0.68	10.20%	0.00	0.00%	
Penetration	1	m	1 m		

Conclusion and Recommendations

- Proposed post rupture resistance calculation can be considered as acceptable and validated.
- Implementing the method into SHARP's code is on progress. In new version of the software, post rupture resistance will be taken into account and also new version will be tested with all required simulations.
- The coupling effect between different elements such as side shell and deck should now be investigated.
- The reason behind rapid failure of stiffener super-elements should also be investigated. Because of this reason, stiffeners absorb less energy than expected.

17

Prof. Hervé Le Sourne

Ing. Stéphane Paboeuf

- Prof. Philippe Rigo
- PhD student Ye Pyae Sone Oo
- To all the people who directly or indirectly have lent a helping hand

THANK YOU